Uitwerking Tentamen Analyse 6 november 2012

1. (a) (a_n) convergeert niet omdat er twee deelrijen zijn die naar een verschillende waarde convergeren. (2 pt.)

De limietpunten van A zijn 2 en -2 (3 pt.), dus $\overline{A} = \{a_1, a_2, \dots, -2, 2\}$ (1 pt.).

(b) F is de kleinste gesloten verzameling die E^c bevat, en dus is F^c de grootste open verzameling bevat in E. (5 pt.)

Nee; E = [0, 1] (2 pt.).

- 2. Define the continuous function g(x) = f(x) x. Then $g(a) \le 0$ and $g(b) \ge 0$. By the intermediate value theorem there exists a $c \in [a, b]$ such that g(c) = 0, or equivalently f(c) = c.
- 3. Consider $f_{\epsilon}(x_2) = f_{\epsilon}(x_1)$ with $x_1 \leq x_2$, or equivalently $\epsilon(g(x_2) g(x_1)) = x_2 x_1$. By the mean value theorem there exists $c \in (x_1, x_2)$ such that $\epsilon g'(c)(x_2 x_1) = x_2 x_1$ and hence

$$|\epsilon||g'(c)||x_2 - x_1| = |x_2 - x_1|$$

By taking ϵ such that $|\epsilon| < 1/M$ it follows that $x_1 = x_2$, and thus for these values of ϵ f_{ϵ} is one-to-one.

- 4. (a) For x < 1 we have $x^n \to 0$ and thus $f_n(x) \to 0$. For x = 1 we have $f_n(1) = \frac{1}{2}$ and thus $f(1) = \frac{1}{2}$. For x > 1 we have $x^n \to \infty$ and thus $f_n(x) \to 1$. (3 pt.) If f_n would converge uniformly then the limit function f would be continuous (since all f_n are continuous). Contradiction.(3 pt.)
 - (b) For $x < 1 \mid \frac{x^n}{1+x^n} 0 \mid \le x^n \le c^n < \epsilon$ for $n > \frac{\ln |\epsilon|}{\ln c}.$ (4 pt.)
 - (c) For x > 1 $\left| \frac{x^n}{1+x^n} 1 \right| = \frac{1}{1+x^n} \le \frac{1}{1+b^n} < \epsilon$ for n large enough.(4 **pt.**)

 Take the sequence $x_n := 1 + 1/n > 1$. Then $f_n(x_n) = \frac{(1+\frac{1}{n})^n}{!+(1+\frac{1}{n})^n} \to \frac{\epsilon}{1+\epsilon}$. Thus no uniform convergence to f(x) = 1 on $(1, \infty)$.(5 **pt.**)
- 5. (a) For x < 1 x^n converges quicker to 0 than n^2 to ∞ . Furthermore $f_n(1) = 0.(\mathbf{2} \ \mathbf{pt.})$ (b)

$$\int f_n = n^2 \left(\frac{1}{n+1} x^{n+1} - \frac{1}{n+2} x^{n+2}\right) = n^2 \frac{1}{(n+1)(n+2)} \to 1$$
(5 pt.)

- (c) If f_n would converge uniformly then $\int f_n \to \int f = 0$. (Or direct proof.)(4 pt.)
- 6. (a) $\frac{1}{\sin x + n^2} \le \frac{1}{n^2 1}$, and thus by the Weierstrass test uniform convergence. Since the functions $\frac{1}{\sin x + n^2}$ are continuous this implies continuity of the sum function. (5 pt.)
 - (b) $\frac{d}{dx}(\frac{1}{\sin x + n^2}) = \frac{-\cos x}{(\sin x + n^2)^2}$ and since $\left|\frac{-\cos x}{(\sin x + n^2)^2}\right| \leq \frac{1}{(n^2 1)^2}$ the series of derivatives converges uniformly, again by the Weierstrass test. Thus the series converges and f is differentiable. (5 pt.) Furthermore $f'(x) = \sum_{n=2}^{\infty} \frac{-\cos x}{(\sin x + n^2)^2}$, which is continuous (again by uniform convergence thanks to the Weierstrass test).(4 pt.)

7. Since f is continuous on [a,b] the function $F(x) := \int_a^x f(t)dt$ is differentiable on [a,b] with F'(x) = f(x). By the mean value theorem there exists $c \in (a,b)$ such that F(b) - F(a) = F'(c)(b-a), i.e. the required identity. (9 pt.) If f is bounded and continuous on (a,b) then the integral $\int_a^b f(t)dt$ still exists and F(x) is continuous on [a,b] and differentiable on (a,b); enough for the mean value theorem. (2 pt.)